The utility of in vitro data in making accurate predictions of human P-glycoprotein-mediated drug-drug interactions: a case study for AZD5672.
نویسندگان
چکیده
To support drug development and registration, Caco-2 cell monolayer assays have previously been set up and validated to determine whether candidate drugs are substrates or inhibitors of human P-glycoprotein (P-gp). In this study, the drug-drug interaction (DDI) potential of N-(1-{(3R)-3-(3,5-difluorophenyl)-3-[4-methanesulfonylphenyl]propyl}piperidin-4-yl)-N-ethyl-2-[4-methanesulfonylphenyl]acetamide (AZD5672) was assessed accordingly, and a subsequent clinical digoxin interaction study was performed. AZD5672 (1-500 μM) demonstrated concentration-dependent efflux across cell monolayers, which was abolished in the presence of ketoconazole and quinidine, identifying AZD5672 as a P-gp substrate. In addition, P-gp-mediated digoxin transport was inhibited in a concentration-dependent manner by AZD5672 (IC(50) = 32 μM). Assessment of the calculated theoretical gastrointestinal inhibitor concentration ([I(2)]) and predicted steady-state maximum total plasma inhibitor concentration ([I(1)]) indicated the potential for a DDI at the intestinal but not the systemic level after the predicted therapeutic dose of AZD5672 (100 mg). A clinical study was performed and the plasma pharmacokinetics [observed maximum plasma drug concentration (C(max)) and area under the plasma concentration versus time curve from 0 to 72 h postdose (AUC(0-72 h))] of orally dosed digoxin (0.5 mg) were found to be unaffected by coadministration of AZD5672 (50 mg) at steady state. In contrast, a 150-mg dose of AZD5672 significantly increased digoxin C(max) and AUC(0-72 h) by 1.82- and 1.33-fold, respectively. Concentration-time profile comparisons indicated that digoxin elimination was unchanged by AZD5672, and the interaction was most likely to have resulted from inhibition of intestinal P-gp leading to increased digoxin absorption. The observed dose-dependent clinically significant interaction was accurately predicted using calculated [I(2)] and in vitro P-gp inhibition data, confirming AZD5672 to be a P-gp inhibitor in vivo.
منابع مشابه
Inhibitory effect of clemastine on P-glycoprotein expression and function: an in vitro and in situ study
Objective(s):Transporters have an important role in pharmacokinetics of drugs. Inhibition or induction of drug transporters activity can affect drug absorption, safety, and efficacy. P-glycoprotein (P-gp) is the most important membrane transporter that is responsible for active efflux of drugs. It is important to understand which drugs are substrates, inhibitors, or inducers of P-gp to minimize...
متن کاملEffect of Honey on CYP3A4 Enzyme and P-Glycoprotein Activity in Healthy Human Volunteers
The activity of cytochrome p450 isozyme 3A4 (CYP3A4) enzyme and P-glycoprotein (P-gp) is modulated by grapefruit juice and herbal drugs. CYP3A4 is the major phase I drug metabolizing enzyme and P-gp is an ATP-dependent drug efflux pump that regulates the intestinal absorption of orally administered drugs. Honey is commonly consumed as a dietary supplement. However, its influence on human CY...
متن کاملCo-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance
Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients' survival. Induction of drug efflux due to overexpression of P-glycoproteins is considered as an important leading cause of multidrug resistance...
متن کاملThe Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model
Membrane permeability and P-glycoprotein (P-gp) efflux system are regulating factors in the drug brain penetration. Recently, some drug delivery systems have been developed to overcome these limitations. In this study, Metoclopramid has been encapsulated in PLGA nanoparticles using the emulsification/solvent evaporation technique for in vitro evaluation of the effect of PLGA nanoparticles on BB...
متن کاملThe Role of Nanoparticle in Brain Permeability: An in-vitro BBB Model
Membrane permeability and P-glycoprotein (P-gp) efflux system are regulating factors in the drug brain penetration. Recently, some drug delivery systems have been developed to overcome these limitations. In this study, Metoclopramid has been encapsulated in PLGA nanoparticles using the emulsification/solvent evaporation technique for in vitro evaluation of the effect of PLGA nanoparticles on BB...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2011